Benefits of Aspirin Outweigh Risks in Age-Related Macular Degeneration Patients

Recent press releases regarding the potential adverse effects of aspirin on macular degeneration have caused patients with Age-related Macular Degeneration (AMD) to discontinue their aspirin use without consulting their physician. This study weighed the benefits that aspirin provides for patients’ cardiovascular health compared to the risk of AMD worsening.

After reviewing nine cardiovascular and ten ophthalmological studies and analyzing the risks/benefits of aspirin use, researchers found that the small and still unconfirmed added risk of AMD is far outweighed by the solid benefits of cardio-protective aspirin. Patients who are taking aspirin for cardiovascular health, therefore, should not fear the possible, theoretical and exaggerated risks of exacerbating their AMD.

ARVO Posterboard #: B0333
Abstract Number: 3200 – B0333
Author: Christine Garabetian, et al
The following article by June Javelosa for Futurism.com caught my eye.

Self-Driving Cars Could Transform the Lives of the Visually Impaired

The promise of truly autonomous vehicle technology is becoming a reality. Enter: Optimus Ride, a startup in Cambridge, Massachusetts that is developing self-driving technologies for electric vehicles. One such vehicle was used to shuttle students and staff around the Perkins campus, the U.S.’ oldest school for the blind, using a laptop as a guide.

"Autonomous vehicles will be transformative for people who are blind," says Dave Power, president and CEO of Perkins.

Advocates for the blind say this advancement is set to revolutionize their lives by giving them more independence. After the demo, Perkins employees gave Optimus Ride numerous suggestions, such as making sure to provide adequate floor space for service dogs.

They also emphasized the need for a non-visual interface that passengers could use to communicate with the car. It could function using voice-over technology or haptic feedback, much like the gesture-based screen readers the blind use on their smartphones.

Jim Denham, Perkins’s educational technology coordinator, anticipates creating an app that will work alongside the vehicle. It will summon the vehicle and give periodic status updates about the vehicle’s progress.
“Which is better … 1 or 2?”

If you have been to an eye care provider because you wanted to know if glasses would help you to see better, you’ve probably been asked this question ... more than once.

This question is asked while performing a refraction and it can be a nerve racking question. You feel like you don’t want to give the wrong answer and sometimes you just cannot tell which is better. Rest assured, if you cannot tell which is better, then “I cannot tell” is the right answer!

What is a “refraction”?

The refraction is a process that begins with the use of a retinoscope or an autorefractor. These do not require any responses from you. They provide a starting point for the subjective refraction (when you have to tell “Which is better, 1 or 2?”).

Typically during the subjective refraction a phoropter is used (shown above). The phoropter is the piece of equipment that you sit behind, looking through holes (that have lenses) at the visual acuity chart across the room. The phoropter allows the lenses to be changed easily and quickly as the question is asked,

“Which is better, 1 or 2?”.

Continued ...
Continued ... “Which Is Better ... 1 or 2?”

However, there is another way to do a refraction. That is with a trial frame and loose lenses (see below). If you have low vision, this is the best way to have a refraction performed.

More on Refraction

Technically, refraction is the bending of light that takes place within the human eye. The goal of the light bending is to put the visual image (of the object that you are looking at) on the retina in the back of the eye.

As with almost all aspects of human anatomy and function, there are many variations and occasional malfunction. This can result in refractive errors. The shape of the cornea, the shape of the lens and the length of the eyeball are the main components that determine the distance refraction of the eye. Lenses are used to compensate for these refractive errors.

Typical Refractive Errors

Myopia (Nearsighted): Visual images come to a focus in front of the retina of the eye. This means you cannot see far away. A concave lens is used in your glasses to compensate for the myopia by moving the image back to the retina.

Hyperopia (Farsighted): Visual images come to a focus behind the retina of the eye. This means your eye muscles have to work harder to see, so it usually affects your close up vision first. A convex lens is put in your glasses to compensate for hyperopia by moving the image forward to the retina.
Astigmatism: Visual images do not focus in just one spot. This means you can have blurry vision both far away and close up. The lens in your glasses will bring the image into one focal point.

Presbyopia: When looking at an object close up, your eye cannot bring it into focus. This is due to aging. A convex lens compensates for the problem.

Does macular degeneration cause refractive disorders?

No, macular degeneration does not cause you to have refractive disorders. Macular degeneration affects the retina, but not the focusing apparatus of the eye. However, most people with macular degeneration are older so they have presbyopia. If this is not corrected by wearing lenses to refocus the image, the difficulty with vision caused by the macular degeneration will be aggravated, making seeing up close even more difficult.

Therefore, it is important for all with macular degeneration to see their eye doctor regularly and have a good refraction done.

Cheri Glaus OD, Optometrist
Joe Fontenot MD, CLVT Medical Director
Community Services for Vision Rehabilitation(CSVR)
Mobile, Alabama
Dry Macular Degeneration

Genentech, Inc., a leading pharmaceutical developer, is currently conducting two phase III trials studying the drug lampalizumab as a potential treatment for advanced dry macular degeneration, also known as geographic atrophy (GA). Patients who have been diagnosed with GA are encouraged to participate in the trials, which are being conducted at hundreds of locations in the U.S., Canada, Europe, South America, and Australia.

If lampalizumab continues to show success, this could be a major breakthrough for GA patients, for whom there has been no previous treatment. The Phase 2 study showed a 20.4 percent reduction in progression of advanced GA at 18 months. The drug works by inhibiting Complement Factor D, a protein that is best known for its role in reducing infection.

Currently, two clinical research studies (Chroma and Spectri) are recruiting patients. Both studies, which are identical, are comparing lampalizumab with a placebo. 936 people are expected to participate for a study period of approximately two years. For easy-to-understand information about lampalizumab, geographic atrophy, trial locations, and how to participate, see http://www.garesearchstudy.com. Information is also available at clinicaltrials.gov (identifier #NCT02288559)

Lucentis® Approved for Myopic Macular Degeneration

Genentech has announced FDA approval for Lucentis® as a treatment for patients with neovascularization resulting from myopic macular degeneration (MMD), also known as myopic degeneration. Severe myopia (near-sightedness) can cause uncorrectable central vision impairment, and it may advance to total central vision loss from neovascularization. Lucentis is the first FDA-approved anti-VEGF therapy to treat myopic degeneration in the U.S.
Dr. David Seftel, Director of Research Development for the Macular Degeneration Foundation, interviews the world’s foremost scientists and medical practitioners. Visit MacularNews.org for the latest news and register to receive an email notice when new videos are first posted.

Donations

The Macular Degeneration Foundation, Inc. is a tax-exempt, non-profit organization.

Please visit our website at eyesight.org to make a tax deductible donation.

Checks may be mailed to:

Macular Degeneration Foundation, Inc.,
P.O. Box 531313,
Henderson, NV 89053

Call: 888-633-3937 (USA)
Call: 702-450-2908 (Intl)
Email: liz@eyesight.org

Disclaimer - Articles in the Magnifier are for information only and are not an endorsement by the Macular Degeneration Foundation editorial staff.
Clinical Trial Information
Nat'l Eye Institute
800-411-1222 or www.nei.nih.gov

Clinical trials have guidelines called “inclusion” and “exclusion” criteria. These criteria (age, gender, type and stage of disease, etc.) keep participants safe and ensure researchers will be able to answer the questions they plan to study.

New Sustained Delivery Method for Lucentis

By Dan Roberts - ILVSG Newsletter

Genentech, Inc. is testing a less-invasive method of delivery of their anti-VEGF drug Lucentis into the eyes of patients with wet AMD. Currently, anti-VEGF treatments require regular monthly or bimonthly injections into the back of the eye, which can be taxing on patients’ time and stress level. The new method utilizes a timed release capsule implanted into the eye with a port to the exterior of the eyeball through which the drug is refreshed as needed. This sustained delivery method could extend the time between clinic visits by many months, greatly reducing the burden of frequent injections.

The Phase II clinical study is currently recruiting patients at 52 sites across the United States. For information about these sites and the criteria for participating, enter Identifier #NCT02510794 at clinicaltrials.gov, or call 888-662-6728.